The R-algebra structure on products of R-algebras #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
The R-algebra structure on Π i : I, A i
when each A i
is an R-algebra.
Main defintions #
@[protected, instance]
def
prod.algebra
(R : Type u_1)
(A : Type u_2)
(B : Type u_3)
[comm_semiring R]
[semiring A]
[algebra R A]
[semiring B]
[algebra R B] :
Equations
- prod.algebra R A B = {to_has_smul := mul_action.to_has_smul distrib_mul_action.to_mul_action, to_ring_hom := {to_fun := ((algebra_map R A).prod (algebra_map R B)).to_fun, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}, commutes' := _, smul_def' := _}
@[simp]
theorem
prod.algebra_map_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[comm_semiring R]
[semiring A]
[algebra R A]
[semiring B]
[algebra R B]
(r : R) :
⇑(algebra_map R (A × B)) r = (⇑(algebra_map R A) r, ⇑(algebra_map R B) r)
def
alg_hom.fst
(R : Type u_1)
(A : Type u_2)
(B : Type u_3)
[comm_semiring R]
[semiring A]
[algebra R A]
[semiring B]
[algebra R B] :
First projection as alg_hom
.
def
alg_hom.snd
(R : Type u_1)
(A : Type u_2)
(B : Type u_3)
[comm_semiring R]
[semiring A]
[algebra R A]
[semiring B]
[algebra R B] :
Second projection as alg_hom
.
@[simp]
@[simp]
theorem
alg_hom.prod_fst_snd
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[comm_semiring R]
[semiring A]
[algebra R A]
[semiring B]
[algebra R B] :
(alg_hom.fst R A B).prod (alg_hom.snd R A B) = 1
@[simp]
theorem
alg_hom.prod_equiv_symm_apply
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[comm_semiring R]
[semiring A]
[algebra R A]
[semiring B]
[algebra R B]
[semiring C]
[algebra R C]
(f : A →ₐ[R] B × C) :
⇑(alg_hom.prod_equiv.symm) f = ((alg_hom.fst R B C).comp f, (alg_hom.snd R B C).comp f)