MulOpposite
commutes with ⊗
#
The main result in this file is:
algebra.tensor_product.op_alg_equiv : Aᵐᵒᵖ ⊗[R] Bᵐᵒᵖ ≃ₐ[S] (A ⊗[R] B)ᵐᵒᵖ
def
algebra.tensor_product.op_alg_equiv
{R : Type u_1}
(S : Type u_2)
{A : Type u_3}
{B : Type u_4}
[comm_semiring R]
[comm_semiring S]
[semiring A]
[semiring B]
[algebra R S]
[algebra R A]
[algebra R B]
[algebra S A]
[smul_comm_class R S A]
[is_scalar_tower R S A] :
tensor_product R Aᵐᵒᵖ Bᵐᵒᵖ ≃ₐ[S] (tensor_product R A B)ᵐᵒᵖ
MulOpposite
commutes with TensorProduct
.
Equations
- algebra.tensor_product.op_alg_equiv S = alg_equiv.of_alg_hom (algebra.tensor_product.alg_hom_of_linear_map_tensor_product' ((tensor_product.algebra_tensor_module.congr (mul_opposite.op_linear_equiv S).symm (mul_opposite.op_linear_equiv R).symm).trans (mul_opposite.op_linear_equiv S)).to_linear_map _ _) (⇑alg_hom.op_comm (algebra.tensor_product.alg_hom_of_linear_map_tensor_product' (show tensor_product R A B ≃ₗ[S] (tensor_product R Aᵐᵒᵖ Bᵐᵒᵖ)ᵐᵒᵖ, from (tensor_product.algebra_tensor_module.congr (mul_opposite.op_linear_equiv S) (mul_opposite.op_linear_equiv R)).trans (mul_opposite.op_linear_equiv S)).to_linear_map _ _)) _ _
theorem
algebra.tensor_product.op_alg_equiv_apply
{R : Type u_1}
(S : Type u_2)
{A : Type u_3}
{B : Type u_4}
[comm_semiring R]
[comm_semiring S]
[semiring A]
[semiring B]
[algebra R S]
[algebra R A]
[algebra R B]
[algebra S A]
[smul_comm_class R S A]
[is_scalar_tower R S A]
(x : tensor_product R Aᵐᵒᵖ Bᵐᵒᵖ) :
@[simp]
theorem
algebra.tensor_product.op_alg_equiv_tmul
{R : Type u_1}
(S : Type u_2)
{A : Type u_3}
{B : Type u_4}
[comm_semiring R]
[comm_semiring S]
[semiring A]
[semiring B]
[algebra R S]
[algebra R A]
[algebra R B]
[algebra S A]
[smul_comm_class R S A]
[is_scalar_tower R S A]
(a : Aᵐᵒᵖ)
(b : Bᵐᵒᵖ) :
⇑(algebra.tensor_product.op_alg_equiv S) (a ⊗ₜ[R] b) = mul_opposite.op (mul_opposite.unop a ⊗ₜ[R] mul_opposite.unop b)
@[simp]
theorem
algebra.tensor_product.op_alg_equiv_symm_tmul
{R : Type u_1}
(S : Type u_2)
{A : Type u_3}
{B : Type u_4}
[comm_semiring R]
[comm_semiring S]
[semiring A]
[semiring B]
[algebra R S]
[algebra R A]
[algebra R B]
[algebra S A]
[smul_comm_class R S A]
[is_scalar_tower R S A]
(a : A)
(b : B) :
⇑((algebra.tensor_product.op_alg_equiv S).symm) (mul_opposite.op (a ⊗ₜ[R] b)) = mul_opposite.op a ⊗ₜ[R] mul_opposite.op b