Derived from "A New Formalization of Origami in Geometric Algebra" #
This version is an incorrect but accidentally simpler attempt at translating what is now
ida.multivector
. It is included for completeness, but not referenced in our paper.
Equations
Instances for ida'.rvector
@[protected, instance]
Equations
- ida'.rvector.add_comm_group ⟨n + 4, _x⟩ = false.rec (add_comm_group (ida'.rvector ⟨n + 4, _x⟩)) _
- ida'.rvector.add_comm_group ⟨3, _x⟩ = _.mpr real.add_comm_group
- ida'.rvector.add_comm_group ⟨2, _x⟩ = _.mpr prod.add_comm_group
- ida'.rvector.add_comm_group ⟨1, _x⟩ = _.mpr prod.add_comm_group
- ida'.rvector.add_comm_group ⟨0, _x⟩ = _.mpr real.add_comm_group
Equations
- ida'.grade m i = ⇑m i
def
ida'.multivector.of
(i : fin 4) :
ida'.rvector i →+ direct_sum (fin 4) (λ (i : fin 4), ida'.rvector i)
Equations
Equations
- ida'.rvector_mul _x_1 _x_2 = sorry
- ida'.rvector_mul _x _x_1 = sorry
- ida'.rvector_mul (a₁, a₂, a₃) (b₁, b₂, b₃) = ⇑(ida'.multivector.of 0) (a₁ * b₁ + a₂ * b₂ + a₃ * b₃) + ⇑(ida'.multivector.of 2) sorry
- ida'.rvector_mul _x _x_1 = sorry
- ida'.rvector_mul _x _x_1 = sorry
- ida'.rvector_mul a b = ⇑(ida'.multivector.of 0) (a * b)
Note: this declaration is incomplete and uses sorry
.
@[protected, instance]
Equations
- ida'.multivector.has_mul = {mul := λ (a b : ida'.multivector), finset.univ.sum (λ (i : fin 4), finset.univ.sum (λ (j : fin 4), ida'.rvector_mul (ida'.grade a i) (ida'.grade b j)))}
@[protected, instance]
Equations
- ida'.multivector.ring = sorry
Note: this declaration is incomplete and uses sorry
.
@[protected, instance]
Equations
- ida'.multivector.algebra = sorry
Note: this declaration is incomplete and uses sorry
.