Derived from "A Formalization of Grassmann-Cayley Algebra in Coq and Its Application to Theorem Proving in Projective Geometry" #
by Laurent Fuchs and Laurent Théry
Equations
- laurent.Kₙ α (n + 1) = (α × laurent.Kₙ α n)
- laurent.Kₙ α 0 = unit
Instances for laurent.Kₙ
@[protected, instance]
Equations
@[protected, instance]
Equations
- laurent.Kₙ.module α (n + 1) = id prod.module
- laurent.Kₙ.module α 0 = id punit.module
Equations
- laurent.Gₙ α (n + 1) = (laurent.Gₙ α n × laurent.Gₙ α n)
- laurent.Gₙ α 0 = α
Instances for laurent.Gₙ
@[protected, instance]
Equations
Equations
- laurent.coe_α k = (laurent.coe_α 0, laurent.coe_α k)
- laurent.coe_α k = k
@[protected, instance]
Equations
- laurent.has_coe_α = λ (n : ℕ), {coe := laurent.coe_α n}
Equations
- laurent.coe_Kₙ (x₁, x₂) = (↑x₁, laurent.coe_Kₙ x₂)
- laurent.coe_Kₙ k = 0
@[protected, instance]
Equations
- laurent.has_coe_Kₙ = λ (n : ℕ), {coe := laurent.coe_Kₙ n}