mathlib3 documentation

lean-ga / for_mathlib.linear_algebra.bilinear_form.tensor_product

def bilin_form.tensor_distrib' {R : Type u_2} {A : Type u_3} {M₁ : Type u_4} {M₂ : Type u_5} [comm_semiring R] [comm_semiring A] [add_comm_monoid M₁] [add_comm_monoid M₂] [algebra R A] [module R M₁] [module A M₁] [smul_comm_class R A M₁] [smul_comm_class A R M₁] [smul_comm_class R A A] [is_scalar_tower R A M₁] [module R M₂] :

The tensor product of two bilinear forms injects into bilinear forms on tensor products.

Equations
@[simp]
theorem bilin_form.tensor_distrib'_tmul {R : Type u_2} {A : Type u_3} {M₁ : Type u_4} {M₂ : Type u_5} [comm_semiring R] [comm_semiring A] [add_comm_monoid M₁] [add_comm_monoid M₂] [algebra R A] [module R M₁] [module A M₁] [smul_comm_class R A M₁] [smul_comm_class A R M₁] [smul_comm_class R A A] [is_scalar_tower R A M₁] [module R M₂] (B₁ : bilin_form A M₁) (B₂ : bilin_form R M₂) (m₁ : M₁) (m₂ : M₂) (m₁' : M₁) (m₂' : M₂) :
(bilin_form.tensor_distrib' (B₁ ⊗ₜ[R] B₂)) (m₁ ⊗ₜ[R] m₂) (m₁' ⊗ₜ[R] m₂') = B₁ m₁ m₁' * (algebra_map R A) (B₂ m₂ m₂')
@[protected, reducible]
def bilin_form.tmul' {R : Type u_2} {A : Type u_3} {M₁ : Type u_4} {M₂ : Type u_5} [comm_semiring R] [comm_semiring A] [add_comm_monoid M₁] [add_comm_monoid M₂] [algebra R A] [module R M₁] [module A M₁] [smul_comm_class R A M₁] [smul_comm_class A R M₁] [smul_comm_class R A A] [is_scalar_tower R A M₁] [module R M₂] (B₁ : bilin_form A M₁) (B₂ : bilin_form R M₂) :
bilin_form A (tensor_product R M₁ M₂)

The tensor product of two bilinear forms, a shorthand for dot notation.

Equations
theorem bilin_form.is_symm.tmul {R : Type u_2} {M₁ : Type u_4} {M₂ : Type u_5} [comm_semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [module R M₁] [module R M₂] {B₁ : bilin_form R M₁} {B₂ : bilin_form R M₂} (hB₁ : B₁.is_symm) (hB₂ : B₂.is_symm) :
(B₁.tmul B₂).is_symm
theorem quadratic_form.pos_def.tmul {M₁ : Type u_4} {M₂ : Type u_5} [add_comm_group M₁] [add_comm_group M₂] [module M₁] [module M₂] {B₁ : bilin_form M₁} {B₂ : bilin_form M₂} (hB₁ : B₁.to_quadratic_form.pos_def) (hB₂ : B₂.to_quadratic_form.pos_def) :

Note: this declaration is incomplete and uses sorry.