mathlib3 documentation

lean-ga / geometric_algebra.from_mathlib.category_theory

Category-theoretic interpretations of clifford_algebra #

Main definitions #

structure QuadraticModule (R : Type u) [comm_ring R] :
Type (max u (v+1))
Instances for QuadraticModule
@[protected, instance]
Equations
@[protected, instance]
Equations
Equations
theorem QuadraticModule.comp_def {R : Type u} [comm_ring R] {M N U : QuadraticModule R} (f : M N) (g : N U) :
@[protected, instance]
Equations

The "clifford algebra" functor, sending a quadratic R-module V to the clifford algebra on V.

Equations
structure Cliff {R : Type u} [comm_ring R] {M : Type w} [add_comm_group M] [module R M] (Q : quadratic_form R M) :
Type (max u (v+1) w)

The category of pairs of algebras and clifford_homs to those algebras.

https://empg.maths.ed.ac.uk/Activities/Spin/Lecture1.pdf

Instances for Cliff
def Cliff.of {R : Type u} [comm_ring R] {M : Type w} [add_comm_group M] [module R M] (Q : quadratic_form R M) {A : Type v} [ring A] [algebra R A] (f : clifford_algebra.clifford_hom Q A) :

Convert a clifford_hom Q A to an element of Cliff Q.

Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
def Cliff.quiver.hom.unique {R : Type u} [comm_ring R] {M : Type w} [add_comm_group M] [module R M] (Q : quadratic_form R M) (Y : Cliff Q) :
Equations