mathlib3 documentation

lean-ga / geometric_algebra.from_mathlib.complexification

Complexification of a clifford algebra #

In this file we show the isomorphism

where

This covers §2.2 of https://empg.maths.ed.ac.uk/Activities/Spin/Lecture2.pdf.

We show:

Note that all the results in this file are already in Mathlib4 due to https://github.com/leanprover-community/mathlib4/pull/6778.

def quadratic_form.base_change {R : Type uR} (A : Type uA) {V : Type uV} [comm_ring R] [comm_ring A] [algebra R A] [invertible 2] [add_comm_group V] [module R V] (Q : quadratic_form R V) :

Change the base of a quadratic form, defined by $Q_A(a ⊗_R v) = a^2Q(v)$.

Equations
@[simp]
theorem quadratic_form.base_change_apply {R : Type uR} {A : Type uA} {V : Type uV} [comm_ring R] [comm_ring A] [algebra R A] [invertible 2] [add_comm_group V] [module R V] (Q : quadratic_form R V) (c : A) (v : V) :
@[simp]
theorem quadratic_form.base_change_polar_apply {R : Type uR} (A : Type uA) {V : Type uV} [comm_ring R] [comm_ring A] [algebra R A] [invertible 2] [add_comm_group V] [module R V] (Q : quadratic_form R V) (c₁ : A) (v₁ : V) (c₂ : A) (v₂ : V) :
quadratic_form.polar (quadratic_form.base_change A Q) (c₁ ⊗ₜ[R] v₁) (c₂ ⊗ₜ[R] v₂) = c₁ * c₂ * (algebra_map R A) (quadratic_form.polar Q v₁ v₂)
@[reducible]

The complexification of a quadratic form, defined by $Q_ℂ(z ⊗ v) = z^2Q(v)$.

Equations

Complexifying the vector space of a clifford algebra is isomorphic as a ℂ-algebra to complexifying the clifford algebra itself; $Cℓ(ℂ ⊗_ℝ V, Q_ℂ) ≅ ℂ ⊗_ℝ Cℓ(V, Q)$.

This is clifford_algebra.to_complexify and clifford_algebra.of_complexify as an equivalence.

Equations