structure
algebra.filtration
(R : Type u_1)
(A : Type u_2)
(ι : Type u_3)
[preorder ι]
[has_add ι]
[comm_semiring R]
[semiring A]
[algebra R A] :
Type (max u_2 u_3)
- to_fun : ι → submodule R A
- mono' : monotone self.to_fun
- complete' : ∀ (x : A), ∃ (i : ι), x ∈ self.to_fun i
- map_add' : ∀ (n m : ι), self.to_fun (n + m) = self.to_fun n * self.to_fun m
A filtration is an indexed family of submodules such that i ≤ j → S i ≤ S j
and S i * S j = S (i + j)
Instances for algebra.filtration
- algebra.filtration.has_sizeof_inst
- algebra.filtration.has_coe_to_fun
@[protected, instance]
def
algebra.filtration.has_coe_to_fun
{R : Type u_1}
{A : Type u_2}
{ι : Type u_3}
[preorder ι]
[has_add ι]
[comm_semiring R]
[semiring A]
[algebra R A] :
has_coe_to_fun (algebra.filtration R A ι) (λ (_x : algebra.filtration R A ι), ι → submodule R A)
Equations
@[simp]
theorem
algebra.filtration.to_fun_eq_coe
{R : Type u_1}
{A : Type u_2}
{ι : Type u_3}
[preorder ι]
[has_add ι]
[comm_semiring R]
[semiring A]
[algebra R A]
(f : algebra.filtration R A ι) :
theorem
algebra.filtration.mono
{R : Type u_1}
{A : Type u_2}
{ι : Type u_3}
[preorder ι]
[has_add ι]
[comm_semiring R]
[semiring A]
[algebra R A]
(f : algebra.filtration R A ι) :
theorem
algebra.filtration.complete
{R : Type u_1}
{A : Type u_2}
{ι : Type u_3}
[preorder ι]
[has_add ι]
[comm_semiring R]
[semiring A]
[algebra R A]
(f : algebra.filtration R A ι)
(x : A) :
theorem
algebra.filtration.supr_eq_top
{R : Type u_1}
{A : Type u_2}
{ι : Type u_3}
[preorder ι]
[has_add ι]
[comm_semiring R]
[semiring A]
[algebra R A]
(f : algebra.filtration R A ι)
(x : A) :