mathlib3 documentation

lean-ga / for_mathlib.algebra.filtration

Filtrations of an algebra #

structure algebra.filtration (R : Type u_1) (A : Type u_2) (ι : Type u_3) [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] :
Type (max u_2 u_3)

A filtration is an indexed family of submodules such that i ≤ j → S i ≤ S j and S i * S j = S (i + j)

Instances for algebra.filtration
@[protected, instance]
def algebra.filtration.has_coe_to_fun {R : Type u_1} {A : Type u_2} {ι : Type u_3} [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] :
Equations
@[simp]
theorem algebra.filtration.to_fun_eq_coe {R : Type u_1} {A : Type u_2} {ι : Type u_3} [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] (f : algebra.filtration R A ι) :
@[simp]
theorem algebra.filtration.mk_coe {R : Type u_1} {A : Type u_2} {ι : Type u_3} [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] (f : ι submodule R A) (h1 : monotone f) (h2 : (x : A), (i : ι), x f i) (h3 : (n m : ι), f (n + m) = f n * f m) :
{to_fun := f, mono' := h1, complete' := h2, map_add' := h3} = f
theorem algebra.filtration.mono {R : Type u_1} {A : Type u_2} {ι : Type u_3} [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] (f : algebra.filtration R A ι) :
theorem algebra.filtration.map_add {R : Type u_1} {A : Type u_2} {ι : Type u_3} [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] (f : algebra.filtration R A ι) {n m : ι} :
f (n + m) = f n * f m
theorem algebra.filtration.complete {R : Type u_1} {A : Type u_2} {ι : Type u_3} [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] (f : algebra.filtration R A ι) (x : A) :
(i : ι), x f i
theorem algebra.filtration.supr_eq_top {R : Type u_1} {A : Type u_2} {ι : Type u_3} [preorder ι] [has_add ι] [comm_semiring R] [semiring A] [algebra R A] (f : algebra.filtration R A ι) (x : A) :