A set of elements of type α
; implemented as a predicate α → Prop
.
Instances for set
- set.has_mem
- set.has_emptyc
- set.has_insert
- set.has_singleton
- set.has_sep
- set.is_lawful_singleton
- set.has_le
- set.has_subset
- set.boolean_algebra
- set.has_ssubset
- set.has_union
- set.has_inter
- set.has_coe_to_sort
- set.inhabited
- set.has_subset.subset.is_refl
- set.has_subset.subset.is_trans
- set.has_subset.subset.is_antisymm
- set.has_ssubset.ssubset.is_irrefl
- set.has_ssubset.ssubset.is_trans
- set.has_ssubset.ssubset.is_asymm
- set.has_ssubset.ssubset.is_nonstrict_strict_order
- set.unique_empty
- set.nontrivial_of_nonempty
- set.union_is_assoc
- set.union_is_comm
- set.inter_is_assoc
- set.inter_is_comm
- set.can_lift
- set_like.set.has_coe_t
- set.has_Inf
- set.has_Sup
- set.complete_boolean_algebra
- set.order_top
- set.has_involutive_inv
- set.has_involutive_neg
- set.smul_comm_class_set
- set.vadd_comm_class_set
- set.smul_comm_class_set'
- set.vadd_comm_class_set'
- set.smul_comm_class_set''
- set.vadd_comm_class_set''
- set.smul_comm_class
- set.vadd_comm_class
- set.is_scalar_tower
- set.vadd_assoc_class
- set.is_scalar_tower'
- set.vadd_assoc_class'
- set.is_scalar_tower''
- set.vadd_assoc_class''
- set.is_central_scalar
- set.is_central_vadd
- set.no_zero_smul_divisors
- set.no_zero_smul_divisors_set
- set.no_zero_divisors
- set.has_vsub
- finset.set.has_coe_t
- infinite.set
- set.is_atomistic
- set.is_coatomistic
- set.monad
- set.is_lawful_monad
- set.is_comm_applicative
- set.alternative
- set.fintype
- set.finite'
- finite.set.finite
- set.finite.can_lift
- small_set
- filter.has_mem
- filter_basis.has_mem
- ultrafilter.has_mem
- set.has_involutive_star
- set.has_trivial_star
- topological_space.opens.is_open.can_lift
- topological_space.open_nhds_of.can_lift_set
- group_filter_basis.has_mem
- add_group_filter_basis.has_mem
- ring_filter_basis.has_mem
- module_filter_basis.group_filter_basis.has_mem
- set.has_variable_names
The set {x | p x}
of elements satisfying the predicate p
.
Instances for ↥set_of
@[protected, instance]
Equations
- set.has_mem = {mem := λ (x : α) (s : set α), s x}
@[protected, instance]
Equations
- set.has_emptyc = {emptyc := {x : α | false}}
The set that contains all elements of a type.
Instances for set.univ
Instances for ↥set.univ
@[protected, instance]
@[protected, instance]
Equations
- set.has_singleton = {singleton := λ (a : α), {b : α | b = a}}
@[protected, instance]