Submonoids including the central ring #
def
algebra.center_submonoid.to_sub_mul_action
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(self : algebra.center_submonoid R A) :
sub_mul_action R A
Instances for ↥algebra.center_submonoid.to_sub_mul_action
def
algebra.center_submonoid.to_submonoid
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(self : algebra.center_submonoid R A) :
structure
algebra.center_submonoid
(R : Type u_1)
(A : Type u_2)
[comm_semiring R]
[semiring A]
[algebra R A] :
Type u_2
- carrier : set A
- mul_mem' : ∀ {a b : A}, a ∈ self.carrier → b ∈ self.carrier → a * b ∈ self.carrier
- one_mem' : 1 ∈ self.carrier
- smul_mem' : ∀ (c : R) {x : A}, x ∈ self.carrier → c • x ∈ self.carrier
A center_submonoid
is a submonoid that includes the central ring of the algebra
Instances for algebra.center_submonoid
- algebra.center_submonoid.has_sizeof_inst
- algebra.center_submonoid.set_like
- algebra.center_submonoid.submonoid_class
- algebra.center_submonoid.zero_mem_class
@[protected, instance]
def
algebra.center_submonoid.set_like
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A] :
set_like (algebra.center_submonoid R A) A
Equations
- algebra.center_submonoid.set_like = {coe := algebra.center_submonoid.carrier _inst_3, coe_injective' := _}
@[protected, instance]
def
algebra.center_submonoid.submonoid_class
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A] :
@[protected, instance]
def
algebra.center_submonoid.to_sub_mul_action.nonempty
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A) :
@[protected, instance]
def
algebra.center_submonoid.zero_mem_class
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A] :
theorem
algebra.center_submonoid.smul_mem
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A)
(r : R)
{a : A} :
@[protected]
theorem
algebra.center_submonoid.mul_mem
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A)
{a b : A} :
@[protected]
theorem
algebra.center_submonoid.one_mem
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A) :
1 ∈ S
@[protected]
theorem
algebra.center_submonoid.zero_mem
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A) :
0 ∈ S
@[simp]
theorem
algebra.center_submonoid.algebra_map_mem
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A)
(r : R) :
⇑(algebra_map R A) r ∈ S
def
algebra.center_submonoid.closure
(R : Type u_1)
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(s : set A) :
Equations
- algebra.center_submonoid.closure R s = let c : submonoid A := submonoid.closure (set.range ⇑(algebra_map R A) ∪ s) in {carrier := c.carrier, mul_mem' := _, one_mem' := _, smul_mem' := _}
@[simp]
theorem
algebra.center_submonoid.subset_closure
(R : Type u_1)
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
{s : set A} :
s ⊆ ↑(algebra.center_submonoid.closure R s)
@[simp]
theorem
algebra.center_submonoid.closure_to_submonoid
(R : Type u_1)
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
{s : set A} :
(algebra.center_submonoid.closure R s).to_submonoid = submonoid.closure (set.range ⇑(algebra_map R A) ∪ s)
@[protected, instance]
def
algebra.center_submonoid.mul_action
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A) :
mul_action R ↥S
Equations
@[protected, instance]
def
algebra.center_submonoid.monoid_with_zero
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A) :
Equations
- S.monoid_with_zero = {mul := monoid.mul S.to_submonoid.to_monoid, mul_assoc := _, one := monoid.one S.to_submonoid.to_monoid, one_mul := _, mul_one := _, npow := monoid.npow S.to_submonoid.to_monoid, npow_zero' := _, npow_succ' := _, zero := 0, zero_mul := _, mul_zero := _}
@[protected, instance]
def
algebra.center_submonoid.nontrivial
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A)
[nontrivial A] :
@[simp, norm_cast]
theorem
algebra.center_submonoid.coe_zero
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A) :
@[simp, norm_cast]
theorem
algebra.center_submonoid.coe_smul
{R : Type u_1}
{A : Type u_2}
[comm_semiring R]
[semiring A]
[algebra R A]
(S : algebra.center_submonoid R A)
(k : R)
(v : ↥S) :
@[protected, instance]
def
algebra.center_submonoid.has_neg
{R : Type u_1}
{A : Type u_2}
[comm_ring R]
[ring A]
[algebra R A]
(S : algebra.center_submonoid R A) :