mathlib3 documentation

lean-ga / for_mathlib.algebra.center_submonoid

Submonoids including the central ring #

Instances for algebra.center_submonoid.to_sub_mul_action
structure algebra.center_submonoid (R : Type u_1) (A : Type u_2) [comm_semiring R] [semiring A] [algebra R A] :
Type u_2

A center_submonoid is a submonoid that includes the central ring of the algebra

Instances for algebra.center_submonoid
@[protected, instance]
@[protected, instance]
theorem algebra.center_submonoid.smul_mem {R : Type u_1} {A : Type u_2} [comm_semiring R] [semiring A] [algebra R A] (S : algebra.center_submonoid R A) (r : R) {a : A} :
a S r a S
@[protected]
theorem algebra.center_submonoid.mul_mem {R : Type u_1} {A : Type u_2} [comm_semiring R] [semiring A] [algebra R A] (S : algebra.center_submonoid R A) {a b : A} :
a S b S a * b S
@[protected]
theorem algebra.center_submonoid.one_mem {R : Type u_1} {A : Type u_2} [comm_semiring R] [semiring A] [algebra R A] (S : algebra.center_submonoid R A) :
1 S
@[protected]
theorem algebra.center_submonoid.zero_mem {R : Type u_1} {A : Type u_2} [comm_semiring R] [semiring A] [algebra R A] (S : algebra.center_submonoid R A) :
0 S
@[simp]
theorem algebra.center_submonoid.algebra_map_mem {R : Type u_1} {A : Type u_2} [comm_semiring R] [semiring A] [algebra R A] (S : algebra.center_submonoid R A) (r : R) :
@[protected, instance]
Equations
@[protected, instance]
@[simp, norm_cast]
theorem algebra.center_submonoid.coe_zero {R : Type u_1} {A : Type u_2} [comm_semiring R] [semiring A] [algebra R A] (S : algebra.center_submonoid R A) :
0 = 0
@[simp, norm_cast]
theorem algebra.center_submonoid.coe_smul {R : Type u_1} {A : Type u_2} [comm_semiring R] [semiring A] [algebra R A] (S : algebra.center_submonoid R A) (k : R) (v : S) :
(k v) = k v
@[simp]
theorem algebra.center_submonoid.neg_mem {R : Type u_1} {A : Type u_2} [comm_ring R] [ring A] [algebra R A] (S : algebra.center_submonoid R A) (v : A) :
v S -v S
@[protected, instance]
Equations
@[simp, norm_cast]
theorem algebra.center_submonoid.coe_neg {R : Type u_1} {A : Type u_2} [comm_ring R] [ring A] [algebra R A] (S : algebra.center_submonoid R A) (v : S) :