mathlib3 documentation

lean-ga / geometric_algebra.nursery.graded

@[class]
structure graded_module_components (A : Type u) :
Instances for graded_module_components
  • graded_module_components.has_sizeof_inst
@[class]
structure has_grade_select (A : Type u) (G : Type u) [graded_module_components A] [add_comm_group G] [module (A 0) G] :

Grade selection maps from objects in G to a finite set of components of substituent grades

Instances of this typeclass
Instances of other typeclasses for has_grade_select
  • has_grade_select.has_sizeof_inst
@[class]
structure graded_module (A : Type u) (G : Type u) [graded_module_components A] [add_comm_group G] [module (A 0) G] :

A module divisible into disjoint graded modules, where the grade selectio operator is a complete and independent set of projections

Instances for graded_module
  • graded_module.has_sizeof_inst
@[protected, instance]
def graded_module.has_coe {A : Type u} {G : Type u} [graded_module_components A] [add_comm_group G] [module (A 0) G] [graded_module A G] (r : ) :
has_coe (A r) G

convert from r-vectors to multi-vectors

Equations
@[simp]
theorem graded_module.coe_def {A : Type u} {G : Type u} [graded_module_components A] [add_comm_group G] [module (A 0) G] [graded_module A G] {r : } (v : A r) :

Chisholm 6a, ish. This says A = ⟨A}_r for r-vectors. Chisholm aditionally wants proof that A != ⟨A}_r for non-rvectors

theorem graded_module.grade_smul {A : Type u} {G : Type u} [graded_module_components A] [add_comm_group G] [module (A 0) G] [graded_module A G] (r : ) (k : A 0) (a : G) :

Chisholm 6c

chisholm 6d. Modifid to use _s instead of _r on the right, to keep the statement cast-free

chisholm 6e. The phrasing is made a little awkward by the construction of the finite decomposition of select -