mathlib3 documentation

lean-ga / for_mathlib.algebra.algebra.opposite

Algebra structures on the multiplicative opposite #

def alg_hom.from_opposite {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :

An algebra homomorphism f : A →ₐ[R] B such that f x commutes with f y for all x, y defines an algebra homomorphism from Aᵐᵒᵖ.

Equations
@[simp]
theorem alg_hom.from_opposite_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :
@[simp]
theorem alg_hom.to_linear_map_from_opposite {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :
@[simp]
theorem alg_hom.to_ring_hom_from_opposite {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :
@[simp]
theorem alg_hom.to_opposite_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :
def alg_hom.to_opposite {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :

An algebra homomorphism f : A →ₐ[R] B such that f x commutes with f y for all x, y defines an algebra homomorphism to Bᵐᵒᵖ.

Equations
@[simp]
theorem alg_hom.to_linear_map_to_opposite {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :
@[simp]
theorem alg_hom.to_ring_hom_to_opposite {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (hf : (x y : A), commute (f x) (f y)) :
@[protected]
def alg_hom.op {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] :

An algebra hom A →ₐ[R] B can equivalently be viewed as an algebra hom αᵐᵒᵖ →ₐ[R] Bᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

Equations
@[simp]
theorem alg_hom.op_symm_apply_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : Aᵐᵒᵖ →ₐ[R] Bᵐᵒᵖ) (ᾰ : A) :
@[simp]
theorem alg_hom.op_apply_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (ᾰ : Aᵐᵒᵖ) :
@[protected, simp]
def alg_hom.unop {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] :

The 'unopposite' of an algebra hom αᵐᵒᵖ →+* Bᵐᵒᵖ. Inverse to ring_hom.op.

Equations
@[simp]
theorem alg_equiv.alg_equiv.op_apply_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A ≃ₐ[R] B) (ᾰ : Aᵐᵒᵖ) :
def alg_equiv.alg_equiv.op {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] :

An algebra iso A ≃ₐ[R] B can equivalently be viewed as an algebra iso αᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

Equations
@[simp]
theorem alg_equiv.alg_equiv.op_apply_symm_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A ≃ₐ[R] B) (ᾰ : Bᵐᵒᵖ) :
@[protected, simp]
def alg_equiv.unop {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] :

The 'unopposite' of an algebra iso Aᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ. Inverse to alg_equiv.op.

Equations

The double opposite is isomorphic as an algebra to the original type.

Equations
@[simp]
theorem alg_hom.op_comm_symm_apply_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (ᾰ : Aᵐᵒᵖ →ₐ[R] B) (ᾰ_1 : A) :