Order of numerials in an add_monoid_with_one. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
    
theorem
lt_add_one
    {α : Type u_1}
    [has_one α]
    [add_zero_class α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_lt.lt]
    (a : α) :
    
theorem
lt_one_add
    {α : Type u_1}
    [has_one α]
    [add_zero_class α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α (function.swap has_add.add) has_lt.lt]
    (a : α) :
    
theorem
zero_le_two
    {α : Type u_1}
    [add_monoid_with_one α]
    [preorder α]
    [zero_le_one_class α]
    [covariant_class α α has_add.add has_le.le] :
0 ≤ 2
    
theorem
zero_le_three
    {α : Type u_1}
    [add_monoid_with_one α]
    [preorder α]
    [zero_le_one_class α]
    [covariant_class α α has_add.add has_le.le] :
0 ≤ 3
    
theorem
zero_le_four
    {α : Type u_1}
    [add_monoid_with_one α]
    [preorder α]
    [zero_le_one_class α]
    [covariant_class α α has_add.add has_le.le] :
0 ≤ 4
    
theorem
one_le_two
    {α : Type u_1}
    [add_monoid_with_one α]
    [has_le α]
    [zero_le_one_class α]
    [covariant_class α α has_add.add has_le.le] :
1 ≤ 2
    
theorem
one_le_two'
    {α : Type u_1}
    [add_monoid_with_one α]
    [has_le α]
    [zero_le_one_class α]
    [covariant_class α α (function.swap has_add.add) has_le.le] :
1 ≤ 2
@[simp]
    
theorem
zero_lt_two
    {α : Type u_1}
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 2
See zero_lt_two' for a version with the type explicit.
@[simp]
    
theorem
zero_lt_three
    {α : Type u_1}
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 3
See zero_lt_three' for a version with the type explicit.
@[simp]
    
theorem
zero_lt_four
    {α : Type u_1}
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 4
See zero_lt_four' for a version with the type explicit.
    
theorem
zero_lt_two'
    (α : Type u_1)
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 2
See zero_lt_two for a version with the type implicit.
    
theorem
zero_lt_three'
    (α : Type u_1)
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 3
See zero_lt_three for a version with the type implicit.
    
theorem
zero_lt_four'
    (α : Type u_1)
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 4
See zero_lt_four for a version with the type implicit.
@[protected, instance]
    
def
zero_le_one_class.ne_zero.two
    (α : Type u_1)
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
ne_zero 2
@[protected, instance]
    
def
zero_le_one_class.ne_zero.three
    (α : Type u_1)
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
ne_zero 3
@[protected, instance]
    
def
zero_le_one_class.ne_zero.four
    (α : Type u_1)
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
ne_zero 4
    
theorem
one_lt_two
    {α : Type u_1}
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_lt.lt] :
1 < 2
    
theorem
two_pos
    {α : Type u_1}
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 2
Alias of zero_lt_two.
    
theorem
three_pos
    {α : Type u_1}
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 3
Alias of zero_lt_three.
    
theorem
four_pos
    {α : Type u_1}
    [add_monoid_with_one α]
    [partial_order α]
    [zero_le_one_class α]
    [ne_zero 1]
    [covariant_class α α has_add.add has_le.le] :
0 < 4
Alias of zero_lt_four.