Lemmas for linarith #
This file contains auxiliary lemmas that linarith uses to construct proofs.
If you find yourself looking for a theorem here, you might be in the wrong place.
    
theorem
linarith.eq_of_eq_of_eq
    {α : Type u_1}
    [ordered_semiring α]
    {a b : α}
    (ha : a = 0)
    (hb : b = 0) :
    
theorem
linarith.le_of_eq_of_le
    {α : Type u_1}
    [ordered_semiring α]
    {a b : α}
    (ha : a = 0)
    (hb : b ≤ 0) :
    
theorem
linarith.lt_of_eq_of_lt
    {α : Type u_1}
    [ordered_semiring α]
    {a b : α}
    (ha : a = 0)
    (hb : b < 0) :
    
theorem
linarith.le_of_le_of_eq
    {α : Type u_1}
    [ordered_semiring α]
    {a b : α}
    (ha : a ≤ 0)
    (hb : b = 0) :
    
theorem
linarith.lt_of_lt_of_eq
    {α : Type u_1}
    [ordered_semiring α]
    {a b : α}
    (ha : a < 0)
    (hb : b = 0) :
    
theorem
linarith.mul_neg
    {α : Type u_1}
    [strict_ordered_ring α]
    {a b : α}
    (ha : a < 0)
    (hb : 0 < b) :
@[nolint]
    
theorem
linarith.eq_of_not_lt_of_not_gt
    {α : Type u_1}
    [linear_order α]
    (a b : α)
    (h1 : ¬a < b)
    (h2 : ¬b < a) :
a = b