theorem
is_symm_bilin_form_of_real_inner
{V : Type u_1}
[normed_add_comm_group V]
[inner_product_space ℝ V] :
theorem
pos_def_bilin_form_of_real_inner
{V : Type u_1}
[normed_add_comm_group V]
[inner_product_space ℝ V] :
@[protected, instance]
noncomputable
def
tensor_product.inner_product_space.core
{V : Type u_1}
{W : Type u_2}
[normed_add_comm_group V]
[normed_add_comm_group W]
[inner_product_space ℝ V]
[inner_product_space ℝ W] :
Equations
- tensor_product.inner_product_space.core = {to_has_inner := {inner := λ (x y : tensor_product ℝ V W), ⇑(bilin_form_of_real_inner.tmul bilin_form_of_real_inner) x y}, conj_symm := _, nonneg_re := _, definite := _, add_left := _, smul_left := _}
@[protected, instance]
noncomputable
def
tensor_product.normed_add_comm_group
{V : Type u_1}
{W : Type u_2}
[normed_add_comm_group V]
[normed_add_comm_group W]
[inner_product_space ℝ V]
[inner_product_space ℝ W] :
@[protected, instance]
noncomputable
def
tensor_product.inner_product_space
{V : Type u_1}
{W : Type u_2}
[normed_add_comm_group V]
[normed_add_comm_group W]
[inner_product_space ℝ V]
[inner_product_space ℝ W] :
inner_product_space ℝ (tensor_product ℝ V W)
@[simp]
theorem
tmul_inner_tmul
{V : Type u_1}
{W : Type u_2}
[normed_add_comm_group V]
[normed_add_comm_group W]
[inner_product_space ℝ V]
[inner_product_space ℝ W]
(v₁ : V)
(w₁ : W)
(v₂ : V)
(w₂ : W) :
has_inner.inner (v₁ ⊗ₜ[ℝ] w₁) (v₂ ⊗ₜ[ℝ] w₂) = has_inner.inner v₁ v₂ * has_inner.inner w₁ w₂
@[simp]
theorem
nnnorm_tmul
{V : Type u_1}
{W : Type u_2}
[normed_add_comm_group V]
[normed_add_comm_group W]
[inner_product_space ℝ V]
[inner_product_space ℝ W]
(v : V)
(w : W) :