Bundled types #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
bundled c
provides a uniform structure for bundling a type equipped with a type class.
We provide category
instances for these in category_theory/unbundled_hom.lean
(for categories with unbundled homs, e.g. topological spaces)
and in category_theory/bundled_hom.lean
(for categories with bundled homs, e.g. monoids).
@[nolint]
bundled
is a type bundled with a type class instance for that type. Only
the type class is exposed as a parameter.
Instances for category_theory.bundled
- category_theory.bundled.has_sizeof_inst
- category_theory.bundled.has_coe_to_sort
- category_theory.bundled_hom.category
- category_theory.bundled_hom.concrete_category
- category_theory.bundled_hom.forget₂
A generic function for lifting a type equipped with an instance to a bundled object.
Equations
- category_theory.bundled.of α = {α := α, str := str}
@[protected, instance]
Equations
@[reducible]
def
category_theory.bundled.map
{c d : Type u → Type v}
(f : Π {α : Type u}, c α → d α)
(b : category_theory.bundled c) :
Map over the bundled structure