Functors #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Defines a functor between categories, extending a prefunctor
between quivers.
Introduces notation C ⥤ D
for the type of all functors from C
to D
.
(Unfortunately the ⇒
arrow (\functor
) is taken by core,
but in mathlib4 we should switch to this.)
The prefunctor between the underlying quivers.
Instances for category_theory.functor.to_prefunctor
- obj : C → D
- map : Π {X Y : C}, (X ⟶ Y) → (self.obj X ⟶ self.obj Y)
- map_id' : (∀ (X : C), self.map (𝟙 X) = 𝟙 (self.obj X)) . "obviously"
- map_comp' : (∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), self.map (f ≫ g) = self.map f ≫ self.map g) . "obviously"
functor C D
represents a functor between categories C
and D
.
To apply a functor F
to an object use F.obj X
, and to a morphism use F.map f
.
The axiom map_id
expresses preservation of identities, and
map_comp
expresses functoriality.
See https://stacks.math.columbia.edu/tag/001B.
Instances for category_theory.functor
𝟭 C
is the identity functor on a category C
.
Equations
Instances for category_theory.functor.id
- category_theory.full.id
- category_theory.faithful.id
- category_theory.functor.is_equivalence_refl
- category_theory.functor.id.functor.corepresentable
- category_theory.limits.id_preserves_limits
- category_theory.limits.id_preserves_colimits
- category_theory.limits.id_reflects_limits
- category_theory.limits.id_reflects_colimits
- category_theory.limits.id_preserves_finite_limits
- category_theory.limits.id_preserves_finite_colimits
- category_theory.functor.id.additive
Equations
- category_theory.functor.inhabited C = {default := 𝟭 C _inst_1}
F ⋙ G
is the composition of a functor F
and a functor G
(F
first, then G
).
Equations
Instances for category_theory.functor.comp
- category_theory.faithful.comp
- category_theory.full.comp
- category_theory.functor.is_equivalence_trans
- category_theory.adjunction.left_adjoint_of_comp
- category_theory.adjunction.right_adjoint_of_comp
- category_theory.functor.preserves_monomorphisms_comp
- category_theory.functor.preserves_epimorphisms_comp
- category_theory.functor.reflects_monomorphisms_comp
- category_theory.functor.reflects_epimorphisms_comp
- category_theory.functor.comp.reflects_isomorphisms
- category_theory.limits.has_limit_equivalence_comp
- category_theory.limits.has_colimit_equivalence_comp
- category_theory.limits.comp_preserves_limit
- category_theory.limits.comp_preserves_limits_of_shape
- category_theory.limits.comp_preserves_limits
- category_theory.limits.comp_preserves_colimit
- category_theory.limits.comp_preserves_colimits_of_shape
- category_theory.limits.comp_preserves_colimits
- category_theory.limits.comp_reflects_limit
- category_theory.limits.comp_reflects_limits_of_shape
- category_theory.limits.comp_reflects_limits
- category_theory.limits.comp_reflects_colimit
- category_theory.limits.comp_reflects_colimits_of_shape
- category_theory.limits.comp_reflects_colimits
- category_theory.functor.comp.additive